978 - 0 - 521 - 19679 - 6 - Biomedical Image Analysis : Statistical and Variational Methods

نویسنده

  • Aly A. Farag
چکیده

a priori information 299 abdominal scans 184 active appearance models (AAM) 417, 436, 440, 448 active contours 3, 275, 316 formulations 318 active shape models (ASM) 417, 448 admissible functions 347 affine 348 affine intensity transformations 234 affine-invariant 221, 223 affine tangent 280 affine transformation 245, 280, 352, 369 albedo model 444 albedo recovery 445 alignment 346, 361 amplitude-sampling 10 analog signal 10 anisotropic 353 anisotropic diffusion filtering 33 anisotropic Gibbs energy function 148 anisotropic model 146 anisotropic pairwise interaction model 149 arc-length 279 area 201 artificial markers 368 ASIFT 213, 239 autocorrelation 100 autocorrelation function 118 autobinomial model 147, 157 autocovariance function 120 average 91 axial planes 369 axioms 80 band-limited signals 10 bandpass filter 33 band-reject filters 33 bandwidth 18, 24, 67, 166 barycentric coordinates 201 biased estimator 167 basis functions 190, 191 Bayes’ rule 328 Bayesian maximum-a-posteriori (MAP) 301 Bayesian network 137 Bernstein polynomials 191, 192 bimodal image segmentation 342 binomial theorem 192 biological tissue 9 biomedical images 300 blood vessel segmentation 312 Boolean operators 186 Borel sets 85 boundary 185 Bremsstrahlung 41

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of "Image processing and analysis: variational, PDE, Wavelet, and Stochastic methods" by Tony F. Chan and Jianhong (Jackie) Shen

Image processing is an important component of modern technologies because human depends so much on the visual information than other creatures. Image is better than any other information form for us to perceive. Among our information about the world, 99% is perceived with our eyes [1]. Image processing has traditionally been an area in the engineering community. The basic tools are Fourier anal...

متن کامل

Multiplicative Noise Cleaning via a Variational Method Involving Curvelet Coefficients

Classical ways to denoise images contaminated with multiplicative noise (e.g. speckle noise) are filtering, statistical (Bayesian) methods, variational methods and methods that convert the multiplicative noise into additive noise (using a logarithmic function) in order to apply a shrinkage estimation for the log-image data and transform back the result using an exponential function. We propose ...

متن کامل

Variational Networks: Connecting Variational Methods and Deep Learning

In this paper, we introduce variational networks (VNs) for image reconstruction. VNs are fully learned models based on the framework of incremental proximal gradient methods. They provide a natural transition between classical variational methods and state-of-the-art residual neural networks. Due to their incremental nature, VNs are very efficient, but only approximately minimize the underlying...

متن کامل

Weak Statistical Constraints for Variational Stereo Imaging of Oceanic Waves

We develop an observational technique for the stereoscopic reconstruction of the wave form of oceanic sea states via a variational stereo method. In the context of active surfaces, the shape and radiance of the wave surface are obtained as minimizers of an energy functional that combines image observations and smoothness priors. To obey the quasi Gaussianity of oceanic waves observed in nature,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014